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We examine the last unexplored regime of the asymmetric six-vertex model: the 
low-temperature phase of the so-called ferroelectric model. The original publi- 
cation of the exact solution by Sutherland, Yang, and Yang and various deriva- 
tions and reviews published afterward do not contain many details about this 
regime. We study the exact solution for this model by numerical and analytical 
methods. In particular, we examine the behavior of the model in the vicinity 
of an unusual coexistence point that we call the "conical" point. This point 
corresponds to additional singularities in the free energy that were not discussed 
in the original solution. We show analytically that at this point many polariza- 
tions coexist, and that unusual scaling properties hold in its vicinity. 
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1. I N T R O D U C T I O N  

The  s ix-ver tex m o d e l  is one  of  the few exact ly  so lved  mode l s  in s tat is t ical  

mechanics .  Its or ig in  lies in the p r o b l e m  of  c o u n t i n g  the n u m b e r  of  con-  

f igura t ions  of  the h y d r o g e n  a toms  in h y d r o g e n - b o n d e d  crystals,  such as 
ice t~l and  K H 2 P O 4 J  2-4~ In 1967, Lieb,  Yang,  and  Su the r l and  15~ ob ta ined  

exact  so lu t ions  for va r ious  vers ions  of  the mode l ,  and  the mos t  genera l  
so lu t ion  was descr ibed  by Su the r l and ,  Yang,  and Yang/61 These  publ i -  

ca t ions  con ta in  v i r tua l ly  no  details,  and later  m o r e  expl ici t  accoun t s  were 
publ i shed  by Lieb and  W u  ~3~ and Nolden/7"8)  The  pape r  by N o l d e n  17) 

con ta ins  a deta i led  desc r ip t ion  of  the exact  so lu t ion  and  expl ic i t  results for 
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some special cases where these can be obtained analytically. However, the 
low-temperature ferroelectric regime is not treated there. 

A more recent application of the six-vertex model is as a model of 
crystal surfaces. Various restricted solid-on-solid models can be mapped 
onto the six-vertex model, as was shown by van Beijeren for the body- 
centered-cubic lattice tg) and by Jayaprakash and Saam for the face-centered- 
cubic lattice, tl~ This last mapping in particular focuses attention on the 
low-temperature ferroelectric regime of the six-vertex model. In ref. 10 it 
was conjectured that there would be a discontinuity of slope at a particular 
point in the crystal shape. Since in this mapping the crystal shape is, up to 
a scaling factor, given by the shape of the free energy surface as a function 
of applied fields, c11~ this implies the presence of a singularity in the free 
energy at this point. However, such a singularity was not mentioned in the 
general solution of the six-vertex model, t6) Our reexamination of the exact 
solution in this regime, following the method presented in ref. 7, shows that 
there is indeed a singularity at this point and that it has new and unusual 
properties. At this point, a one-parameter family of polarizations coexists, 
and near it interesting scaling properties are found. 

The organization of the rest of the paper is as follows. In Section 2, we 
give a short, general discussion of the six-vertex model and briefly review 
the expressions from the exact solution that we use further on. Then, in 
Section 3, we apply those expressions to a particular point in the phase 
diagram in the low-temperature regime, where a completely analytical solu- 
tion is possible. The behavior of the free energy and the order parameters 
at and around this point is discussed. In Section 4 the same is done, in less 
detail, at the transition between the low- and high-temperature regimes. 
Conclusions and a summary of the results are given in Section 5. The 
appendices contain calculational details that are omitted from the main 
text of the paper. A brief account of this work was published in ref. 12. 

2. T H E  F E R R O E L E C T R I C  S I X - V E R T E X  M O D E L  

A configuration of the six-vertex model is given by a covering of the 
bonds of a square lattice with arrows, satisfying the ice rule: Every lattice 
point must have two incoming and two outgoing arrows. There are six 
possible vertices that satisfy this rule (see Fig. 1). To make the model 
amenable to a solution by transfer matrix techniques it is necessary to 
impose periodic boundary conditions in the horizontal direction: As a 

4 Recent work by Henkel and Schlitz ~3~ discusses some interesting boundary-induced effects 
in the six-vertex model, showing that the effect of the boundary conditions may be non- 
trivial. 
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Fig. 1. The six vertices and  their energy assignments.  

consequence, the number  of down arrows is equal in each row of bonds; 
this conservation law is essential for the exact solution of the model. The 
transfer matrix method used in the exact solution is discussed in, e.g., 
refs. 5, 3, and 4. 

After assigning an energy to each of the vertices, the partition function 
of the model is simply given by the sum over all allowed configurations of 
the Boltzmann factors of the configurations. The usual way to write the 
energies of the vertices is given in Fig. 1. The quantities h and v are to be 
thought  of as fields, acting on the horizontal and vertical arrows, respec- 
tively, favoring one orientation over the other. (The name "asymmetric 
six-vertex model" refers to the fact that these fields create an asymmetry 
between left and right and between up and down arrows.) The fact that 
vertices 5 and 6 have the same energy is no restriction: since they are sinks 
and sources of horizontal arrows they have to occur in pairs because of the 
periodic boundary  conditions, so only the sum of their energies is relevant. 

The variables that are conjugate to the fields h and v are the polariza- 
tions x and y. These are defined as x = 1 - 2f~ and y = 1 - 2f~, where, e.g., 
f ~  is the fraction of the horizontal arrows pointing to the left. x and y are 
order parameters for the various ordered phases. The free energy per vertex 
can be viewed as either a function of the fields, F(h, v), or of the polariza- 
tions, F(x, y). The two are related by a two-dimensional Legendre trans- 
formation 

F(h, v) = min  {F(x, y ) -hx -vy }  (2.1) 
x ~' 

which implies F(h, v)= F(x, y ) -  h x -  vy, with the fields given by 

OF(x, y) OF(x, y) 
h Ox ' v Oy (2.2) 

or conversely 

X ~  
OF(h, v) OF(h, v) 

Oh ' Y = Ob (2.3) 
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The free energy that is calculated in the exact solution is actually F(h, y), 
because of the conservation law for the number  of down arrows. This 
amounts  to solving the model for fixed values of h and y. The relevant free 
energies F(x, y) and F(h, v) are then obtained from F(h, y) through one- 
dimensional Legendre transformations. 

Most of the analysis in ref. 7 is valid for any values of the vertex 
energies. However, certain transformations that are applied do depend on 

~(- ~-~ them; more precisely, they depend on the parameter A -- ,~ q + - ee'q~), 
where t7 -- e ~,  and/3 = 1/kB T is the inverse temperature. The discussion in 
ref. 7 is restricted to the case d < 1; we will focus on d >/1. There is a 
different transformation for d = 1 and for A > I; both are given in ref. 6. As 
a consequence, various quantities and functions that occur in the exact 
solution have different forms in these two cases; they are given in Table I 
(the expressions for the other ranges of A are given in refs. 3 and 7). The 
case d > 1 corresponds to the low-temperature phase of models that are 

Table I. The Definit ions of Various Quantit ies and Functions for the 
T w o  Transformations for A ~> 1" 

d = l  d > l  

d 1 cosh v (v>O)  

1 + 2iu - 2b e " - e  - i"+b 
eipOIu) 

--1 + 2 i u -  2b - e V - i u + b  + 1 

Range of a ( - o% 0] [ - i t ,  0]  
Range o f b  ( - o z ,  - ~ ) u ( � 8 9  oo) ( - o z ,  - v ) w ( v ,  oz )  

F O ( u  - o) 2 arctan(u - v) 2 arctan Lcoth v tan 

Range of O ( - r t ,  n) ( - 2 n ,  2rt) 

2 sinh 2v 
K (u  --  v) 

1 + (u -- v) 2 cosh 2 v -  cos(u -- v) 

4 sinh v ~(u) 
1 + 4(u + ib) 2 cosh v -  cos(u + ib) 

-_I q + 1 eO~ = q e "  - -  1 0o ~ b ~  1 q - e "  

~R(U) In ~b~ --  1 + iu --  b I ' e  -i,, _ e -2,,+ r h'~ 
r lnt," ~ )+" 

~OL(u) In ~b~ 1 + i u - b  / e - i " -  e2"+~~ )-,, 

"No te  that some of the functions depend on b, but the explicit dependence has been 
suppressed for brevity. We use the definitions of O and K as they are given in ref. 7; these 
definitions differ from the ones used in refs. 3, 5, and 6 by a sign in O and a factor of 2n 
in K. 
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"ferroelectric," i.e., that have 8 < 6/2, so that  the vertices 1 and 2, with a 
nonzero net polarization, have lower energies (for h = v = 0 )  than the 
vertices 5 and 6 with zero net polarization (we choose 6 >1 0 without loss 
of generality). By varying T at fixed 6 and 8, it is known that a transition 
to a high-temperature phase (with A < 1) takes place at a critical tem- 
perature T =  Tc (corresponding to 21 = 1)/5"6' 31 

We now give a brief review of the main results in Nolden 's  paper  (7) 
that we will use; for derivations and more  details the reader should consult 
that paper. For  fixed ~, 6, and T, the exact solution provides expressions 
for the free energy and various other quantities of interest, such as the 
fields and the polarizations, as a function of two parameters ,  a and b. 
Different values of  a and b then correspond to different points in the phase 
diagram, i.e., different values of h, v, x, and y. The first step is to find the 
function R(u) from the integral equat ion 

R(u) + K(u - v) R(v) dv = ~(u) (2.4) 
- - a  

R is a complex function of u, a real parameter  in the interval [ - l a l ,  lal];  
it also depends on the values of a and b. 5 This equation results from the 
consistency relations for the wavenumbers  in the Bethe ansatz. R(u) is a 
function describing the distribution of these wavenumbers  in the complex 
plane. Expressions for K ( u -  u) and ~(u) [and the quantities ~R'L(u), p~ 
and O ( u - - v )  which appear  below] are given in Table I. 

Once R is known, the free energy per site can be obtained from the 
largest eigenvalue of the transfer matrix, 

1 1 c" ] 
--/~F(h,y)=maxR.L +-2(lnq+Z~h)+2-~J_,, ~R'L(u)R(u)du (2.5) 

with upper  or lower sign for the right (R) or left (L) eigenvalue, respec- 
tively. Expressions for h and y can be obtained from the "generalized 
normalizat ion" 

~ ( 1 -  y ) -  2i[3h = p~ - I",, O(a -  v) R(v) dv (2.6) 

To  find v, x, and the relevant free energies, F(h, y) must be differentiated 
with respect to h and y, on which variables it depends only implicitly 
through a and b. All this is described in ref. 7, and that t reatment  applies 
to the ferroelectric case without any modification. 

5 Here and in what follows, the explicit dependence of the functions on a and b has been 
omitted for brevity. 
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For  general values of a and b, the only way to solve these equations 
is numerically; the integral equation can be solved with s tandard techni- 
ques (see ref. 14, Chapter  18), and all quantities can be calculated. The 
ranges of a and b in Table I lead to that part  of the phase diagram where 
y~>0. t6) The other half can be obtained through a simple symmetry 
operation. An analytic solution is possible for a = 0 and a = - n ,  and an 
expansion around these points can also be made. The case a = 0  was 
examined in ref. I0; it corresponds to second-order boundaries between 
completely and incompletely polarized phases in the phase diagram. We 
will focus on the case a = -  re, which corresponds to the two "conical" 
points. 

3. A N A L Y T I C  S O L U T I O N  FOR A > 1  

In the case that a = -~z, the integral equations in the previous section 
can be solved analytically by means of Fourier series, as was done for a = 
in the case zi < - 1 in ref. 7. It is then also possible to calculate an explicit 
expression for the free energy and to examine its behavior around the point 
a =  -r~. 

3.1. Finding R(u) 

The first step in the solution is to solve Eq. (2.4). To find the behavior 
both at and around a = - ~ ,  we write the solution R as an expansion in 6 
e = n W a :  

R(u)=Ro(u)+ ~. e"~SR,,,(u) (3.1) m=l 
All integrals of the form S~ -" f (0)  dv can be expanded in E as follows: 

f~--E fit f(v)  do = f(v)  do 

1 q- ~ ~.i {(--E)mftm-l l ( r0--En~c(m-I)(--Tt)} (3.2) 
m = l  

Using this in Eq. (2.4) and substituting the expansion (3.1) everywhere, we 
get a set of  integral equations, one for each order in e, containing Ro and 
the 6R,,,. All functions Ro and 6R,,, are defined on the interval u ~ [ - r e ,  ~] ,  
and all integrals are over the same interval. Since K and ~ have period 2n, 

6 This E should not be confused with the energy e introduced earlier. 
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the solutions Ro and OR m also have this periodicity. [Note that by this 
periodicity, terms with even m in the expansion (3.2) vanish. The terms 
with odd m reduce to twice the value at v = n.] This periodicity makes it 
possible to solve for the functions Ro and fiR., by applying a Fourier 
expansion to the equation. We will now examine the first five orders in e, 
and solve for Ro and the first four 6R'. 

The Fourier components of, e.g., Ro(u) are defined by 

Ro(u)= ~ R~e -i"" (3.3) 
n ~  - - o o  

and similarly for 6Rm, K, and ~. The Fourier coefficients/(n are the same 
as those given in ref. 7, and ~n is calculated in Appendix A: 

/(n = e-2" [nl 
(3.4) 

f{O ( n > ~ O ) ( b > v )  
2e bn sinh(nv) (n < 0) 

G'=l{o2eb"sinh(nv) (n~>0)(n < 0) (b < - v) 

Equation (2.4) to order e ~ is 

Ro(u)-2-~n _ K(u-  v) Ro(v, b) dv = ~(u) (3.5) 
r~ 

(The negative sign in front of the integral results from having reversed the 
order of integration so that it runs from - ~  to re.) Fourier transforming 
Eq. (3.5) gives 

R,,[1 - /~, , ]  =~,, (3.6) 

so, for n 4: 0, /~, is given by 

t" 0 ( n > 0 )  ( b > v )  
{ - e Ib- ")" (n < 0) (3.7) 

R"= S--e 'b+''" (n>O) 
(b<-v)  

�9 ~O (n < 0) 

For n =0,  (3.6) reduces to 0 = 0 ,  so Ro is not yet determined. The Fourier 
series (3.3) for-Ro can be summed, and we find 

eV-Y-b+iu 

Ro(u)=Ro 1 - e  v-v-b• (3.8) 

with the upper (lower) signs for b > v (b < - v ) .  Ro will be determined by 
the next order in e. 
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Next ,  for e ~ we find 

6 R , ( u ) - l  ~ ~ K ( u - v ) 6 R l ( v ) d v =  - -1  [K(u-7[)Ro(7[)]  (3.9) 
Z7[ a 

K,, e , we After  F o u r i e r  t r a n s f o r m i n g  and  us ing K ( u - 7 [ ) = Z , ,  ( - 1 ) "  " -~.u 
have  

(6g'~t),, [ I - / ( , , ]  = ( -  1)"/( , ,Ro(7[) (3.10) 
7[ 

Since Ko = 1, there  is a p r o b l e m  unless  the r.h.s, is zero  for  n = 0. Thus  
Ro(7[) mus t  be zero.  This  r e q u i r e m e n t  fixes Ro, giving 

f ev_b /~o = l + e " -  b ( b > v )  
e,,+ b (3.11) 

1 + e  " + b  ( b <  - v )  

Once  we pu t  R o ( 7 [ ) = 0  it is obv ious  tha t  ( 5 R t ) , , = 0  for  n # 0 .  (6Rj)o will 
be d e t e r m i n e d  in the next  order .  

W e  con t inue  in this spir i t ,  f inding express ions  for  the next  terms:  

1 
i t  6R2(u) - aR2 = --~ Ro(7[) 

i n ( 1 )  " A ' (3.12) 
- K,,Ro(7[) 

(SRCO,, = 3 7 [ ( 1 - / ( , , )  ( n # O )  

0 ( n = 0 )  

1 
6R4(tl) =-- •R4 -- 120 Rt~ 

The  a b o v e  express ions  con ta in  the first, second ,  and  four th  de r iva t ives  
of Ro(v) eva lua ted  at  v = n. These  are  o b t a i n e d  f rom Eq. (3.8), 

eV7-b 
R~(7[) = _+i 

(1 q- e~'~ h) 2 

e,'7- b(1 _ e,,7- b) 
Rg(7[)--  (3.13) (1 q-eVT-b) 3 

R(o4)(7[) _ e v 7- b( 1 --  1 l e  v ~ h + 1 l e  2" 7- b) _ e31V 7- b)) 

(1 + e~'-Tb) 5 

with the uppe r  ( lower)  signs for b > v (b < - v ) .  
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To recapitulate, the total expression for R(u) is 

R(u)=Ro(u)+e26R2+e36R3(u)+e46R4+(_9(e  5) (3.14) 

where 6R 2 and OR 4 are real and independent of u, and 6R3(u) is imaginary. 

3.2.  C a l c u l a t i n g  y a n d  h 

Having determined R, we can now determine y and h using (2.6). We 
will first calculate the values Yo and ho, the first terms in the expansion in 
e, and then find terms up to order e 4 from a slightly simplified equation. 
From Table I, pO(_lt) is given by 

F l pO(_n) = - / I n  Le,.+ ~ + 1.J (3.15) 

The second term on the right-hand side of (2.6) is 

O ( - r c - v ) R o ( v ) d v = ~ - ~  1~,, O(-g-v)e-i"Vdv (3.16) 

The integrals I , , -  - S  ~_ ~ O ( - r  t - v ) e  -i'v dv are calculated in Appendix B. 
They turn out to be 

t ( - 1)" 2rc---Ji (1 - e  - 2'') (n>0)  
17 

I . =  2rc 2 (17=0) (3.17) 

~, ( -  1)'' 2~i (1 n e2"") (n<O) 

For the aforementioned term we now have 

1~.~,, I,,R,, = - nko +/[In(  1 + e '~b) - In(1 + e -,.~b)] (3.18) 

with the upper (lower) signs for b > v (b < -v ) .  The final result then is 

( + iv 
( 1 -- Yo) -- 2i~ho = ~ ] 

2 ~ ~ko - iv 
(b>v)  

(3.19) (b< -v) 
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So we find, using Eq. (3.11), 

Itanh (~'~ -~ ) 
Y0 = l -- tanh (~---~) 

f ?  (b > v) ho= /~ 
(b< - v )  

(b > v) 

(b< - v )  

(3.20) 

Now we use Eq. (2.28) from ref. 7 to find the next orders in e. This 
equation is 

- ~ O a y -  2i~O,h= R ( a ) -  O(2a) R ( - a )  

+~n O ( a - v )  OaR(v)dv (3.21 

Substituting the expansions for R, OaR, expanding all occurrences of a to 
order e 3, and using Appendix B, we find 

n O, y _  2iflOah = n ,, n 2 e 3  R~ + e2 1 R~(n) E3R(~ 
- - -  /r q-3-6 

(3.22) 

Since R~ and R~o 41 are real and R; imaginary, we have 

2 ,, 1 e3R~o4)(n) + (9(e4) a o  y = - ~ e R o ( ~ )  - 

2flOoh = ie 2 R'o(rC) + (0(E4) 
(3.23) 

Putting all this together, we now have power series in E for y and h: 

Y = Yo + E2Y2 + E4y4 + ~9(ES) 

h = ho + E3h3 -k- (.9 (~5 5 ) 
(3.24) 
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with 

yo = ___ tanh (b  2------~v ) 

1 ev:~b(1 --e v~:b) 
Y2= 3 (1 +eVq:b)3 

1 eVVb(1 - lle"Vb+ lle21V-v-bl--e 3~v-vb)) 
Y4= 60 (1 -.I-evWb) 5 (3.25) 

Y 
ho = -T-~ 

h3 ~ - -~--- -  
1 e v'T-b 

6nil (1 + eVa-b) 2 

with the upper (lower) signs for b > v (b < - v ) .  

3.3. Ca lcu la t ing  x and v 

To calculate rigorously expressions for x and v and the Legendre 
transforms F(x, y) and F(h, v), one has to construct the derivatives of 
F(h, y) by applying the chain rule. This is what is done in ref. 7. However, 
by making a few assumptions, it is possible to derive the same expressions 
from the symmetry properties of the exact solution. The assumptions can 
be checked against known exact results, in which case they turn out to 
hold. 

The first step is to realize that, instead of calculating the free energy as 
a function of h and y, one might just as well calculate it as a function of 
another pair of variables, for example, v and x. The results will be exactly 
the same as before, except for the change of variables and the region of the 
phase diagram for which one finds the solution. The preceding calculation 
gives h, y, and F(h, y) expressed in terms of the parameters a and b. The 
solution holds for y >/0, which corresponds to regions II and III (for b >/v) 
and region IV (for b ~< - v) in Fig. 2. 7 The solution for y is of the form 

~Y~(a, b) in regions II and III (3.26) 
Y = ~ Yz(a, b) in region IV 

7 In this section we are only concerned with the so-called incompletely polarized part of the 
phase diagram, which consists of the regions I-VI. This is because this is the only part that 
is mapped out by varying a and b. In the rest of the phase diagram, x and y are frozen at 
their extreme values _+ 1. This is discussed in detail in Section 3.5. 
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where YI and Y2 are given functions. If, on the other hand, one calculates 
F(v, x), one finds exactly the same solution, but now v and x play the roles 
of h and y, and the parameters are now called 6 and b to distinguish them 
from the other set of parameters. The solution is now for that part of the 
phase diagram where x~> 0, regions V and IV (for b >/v), and region III  
(for b ~ < - v ) .  The expression for x is just the same as the one found 
previously for y, 

~'Yl(a, b) in regions V and IV 
x = 1. Yz(fi, b) in region III  (3.27) 

with the same functions Yl and Y2. We now have expressions for both y 
and x in regions III  and IV, only they are given in terms of two different 
sets of parameters, a, b and 6, b. We need a relation between them to find 
x and y expressed in a and b. A simple ansatz is to assume that a = 6 and 
that b and b are related linearly. Since the line b=~b o corresponds to 

= - v ,  and b =  c~ to b =  - ~ ,  this would give b =  - b + ~ b  o - v .  Substi- 
tuting this, we find for x 

fX~(a, b) = Y2(a, - b  + 0 o -  v) in region III  (3.28) 
X = ~ x 2 ( a , b ) =  Yl(a, - b + c k o - V )  in region IV 

If we further assume that the expression for x in region III  also holds in 
region II, as is true for y, we now have expressions for x throughout  the 
region y >/0. The expression for x for b >/v can simply be obtained by 
taking y for b ~< - v  and substituting - b  + ~bo-v for b. Similarly, x for 
b ~< - v  follows from the expression for y for b >~ v with the same substi- 
tution. The same prescription can be used to obtain v from h. 

It is possible, to a certain extent, to check the assumptions we made. 
As a first check, we have calculated x and v to zeroth order in E the 
rigorous way, obtaining the same results as above. Second, from the 
symmetry properties we can also derive consistency relations for the 
expressions for y in various regions. For  example, we can repeat the above 
reasoning for F ( -  v, - x ) .  This gives the region of the phase diagram where 
x ~< 0, regions I and II (for 6 >_- v), and VI (for 6 ~< - v). The expressions for 
x are now 

- Yl(6, 6) in regions I and II 

x = Y2(6, 6) in region VI 
(3.29) 

If we make the same assumptions as before, ~ = a and 6 = v + ~bo- b. Then 
in region II, x is given by - Y~(a, - b  + v + ~bo). But in that region x is also 
given by Yz(a, - b  + fbo- v). So to be consistent the expressions for y have 
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Fig. 2. Phase diagram of the six-vertex model in the (h, v) plane for the case ,J > 1. (Specific 
parameter values are 6=1.5 ,  e.=0.3, and k u T = l . l . )  The bold lines show the phase 
boundaries. The dashed lines show the division of the incompletely polarized part of the phase 
diagram into the six regions which are discussed in the text. 

to satisfy Yj(a, - b  + v + ~o) = - Y2(a, - b  + 0 o -  v). Checking the expres- 
sions for the first few orders in E, (3.25), shows that this is indeed true, 
giving confidence that the assumptions we made are justified. In addition, 
the numerical results confirm the expressions for x and v found in this way. 

3.4. Finding the Free Energy 

Now we are in a position to calculate F(h, y) from (2.5). We need to 
know the integrals 

f~, ~r 'L(u)e-#'"  du (3.30) 

These can be expressed in terms of integrals of the form 

for n/> O. These are calculated in Appendix C. 

822/78/5-6-7 
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The details of the calculation of the zeroth-order part  Fo of the free 
energy as a function of y and h can be found in Appendix D. There it is 
shown that the right eigenvalue is largest for b < - v and b > ~b o and the left 
eigenvalue is largest for v < b < ~b o. Even though at b = ~b o the two eigen- 
values cross, the analytic form of the expression for the free energy Fo is the 
same on either side of b = ~bo. (In fact, this remains true at least up to order 
e 3.) In Appendix D we find 

-flFo(h, y)=~---~-T-v (Ro + ~)=~62 T-2 Yo (3.32) 

with the upper (lower) signs for b>v ( b < - v ) .  Note  that for b>v, 
vo = OF/ay = v/2~, so a = - n and b > v corresponds to the point (ho, Vo) = 
(-v/2/3,  v/2~). Similarly, a = - n  and b < - v  corresponds to (ho, Vo) = 
(v/2~, - v/2~). 

To find the next two orders of F(h, y) in E, we expand Eq. (2.5) as 
usual, to order E 3, which gives 

~3 eV-Y-b 1 - - e  +a-v  
- f l ( F - F o ) =  + e2vR'~(Tr)++_6rr (l +e,,YV_b)21+e • . . . .  (3.33) 

with the upper (lower) signs for b > v (b < - v), and a = b -  ~bo + v. The 
general structure of F(h, y) is thus found to be 

F(h, y) = Fo + E2F2 + 63F3 + (-9(e 4) (3.34) 

The coefficients F ,  can be expressed in terms of the coefficients in the 
expansions of h, v, x, and y [see Eq. (3.25)]: 

fi 
F o =  --~ + Vo Yo 

F2 = roy2 (3.35) 

F 3 = - -  h3 Xo 

Since the Legendre transforms of the free energy are given by 
F(x, y)=F(h, y)+ xh and F(h, v)=F(h, y ) - v y ,  we also have 

6 
F(x, y ) =  --~+VoYo+hoxo+(VoY2+hox2)e2+(9(e 4) (3.36) 

6 
F(h, u) = - -  ~ - -  ( h 3 x  0 + t) 3 y o ) 6  3 + (~(E 4) (3.37) 
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3.5. Discussion 

The overall phase d iagram as a function of h and v can be obtained 
numerically; its central region is shown as the base plane in Fig. 3. It con- 
tains four phases where the polarizations (x, y)  are "frozen in" at their 
extremal values ( __+ 1, + 1 ). Two of these phases, (1, I ) and ( - 1, - 1 ), meet 
along the line h = - v. Both x and y are discontinuous across this line, so 
it represents a first-order phase transition. In between the four frozen 
regions are two incompletely polarized phases, where x and y change 
continuously with h and v. They are separated from the frozen phases by 
continuous transitions, which have been shown to be of the P o k r o v s k y -  
Ta lapov  (PT)  type. ~J~ The points where two PT lines meet the first- 
order line are the "conical" points. 

To  show the relation between the values of the parameters  a and b and 
the phase d iagram in terms of h and v, several lines of constant  a and b 
have been drawn in Fig. 4. This relation is shown only for the part  of the 
phase d iagram with b~> (V+~o)/2. This gives one-quarter  of the phase 
diagram; the rest of the diagram is then obtained by symmetry.  We restric- 
ted our computa t ion  to this region to avoid certain numerical difficulties 
that arise near b =  ___ v: At b = + v, R ( u )  has a pole and this makes the 
solution of the integral equations increasingly difficult as b ~ _ v. An addi- 
tional difficulty is that at b = ~ o ,  ~R'L(u) have poles. This does not affect 

F(h,v) 

-0.5 

-1 -1 

Fig. 3. Free energy surface F(h, o) and phase diagram for the six-vertex model in the (h, o) 
plane for the case ,d > 1. (Specific parameter values are 6 = 1.1, e = 0.45, and k a T =  0.35.) The 
bold lines on both surface and base plane show the phase boundaries. For the completely 
polarized phases, the values of the polarizations (x, y) are noted. All boundaries are of second 
order (specifically, Pokrovsky-Talapov),  except for the one between the (x, y ) =  (1, 1) and 
( -  1, - 1 ) phases, which is of first order. The filled squares at each end of the first-order line 
are the conical points at (h, v )=  +_(-v/2fl, v/2fl). 

822/78/5-6- 7" 
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the integral equations themselves, but does make the integrals involved in 
the calculation of F(h, y), x, and v increasingly difficult as b ~ ~bo. We have 
dealt with this problem by using an integration routine with adaptive step- 
size control (see ref. 14, Chapter 4), as opposed to the simple Gaussian 
quadrature used for solving the integral equations and determining the less 
sensitive integrals. However, near b = ~b o the integration does become quite 
slow. 

Figure 3 also shows the free energy surface F(h, v) superimposed on 
the phase diagram. F(h, v) is purely linear in h and v in the frozen phases, 
reflecting the fact that (x, y ) = -  (OF/ah, OF/Or) is fixed. In the incom- 
pletely polarized phases, x and y change continuously, so F(h, v) is 
smoothly curved. Along the PT lines the curved part of F joins smoothly 

1.0 

> 

0.6 

0.4 
- 1 . 0  - 0 . 8  - 0 . 6  - 0 . 4  

h 

Fig. 4. A section of the phase diagram shown in the base plane of Fig. 3. The solid lines 
again denote phase boundaries and the filled square denotes the conical point. The dashed 
and dotted lines are some contours of constant a and b, respectively. From top to bottom, the 
dashed lines show a ~ -0.07, -0.20, -0.51, and -1.02. From left to right, the dotted lines 
show b = ( v + ~ o ) / 2 ~ 2 . 5 9  (which gives y =  - x  and h = - v ) ,  b~2.72, b=~bo~2.87 (which 
gives x = 0), and b ~ 3.13. Note that the phase boundaries themselves correspond to the limit 
a ~ 0, with the value of b determining the location along these boundaries. The conical point 
corresponds to either a----, - 7r or b --* 09. In the former limit, the angle of approach to the 
conical point is determined by the value of b, while in the latter limit, the approach is tangent 
to the phase boundary for all values of a. 
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onto the linear part, since the singularity in F(h, v) corresponding to the 
(second-order) PT transition leaves the first derivative continuous. Along 
the first-order transition line there is a jump in slope, so that a ridge is 
formed. At the two conical points the slope of F depends on the way in 
which the point is approached, as will be shown later. 

We now turn to the phase diagram in x - y  space, Fig. 5. Here the four 
frozen phases correspond to the corner points (x, y ) = ( _ + l ,  _+ 1). The 
incompletely polarized phases take up the rest of the phase diagram outside 
the lines l+ and l_.  The two conical points now correspond to the two 
lines /+ and 1 , which are given by (xo(b),yo(b)) for b > v  and b < - v ,  
respectively [see Eq. (3.25)]. By eliminating b in Eq. (3.25) we find that 
the lines t+ are given by 

Xo _+ tank [(~bo - v ) / 2 ]  
Yo - (3.38) 

1 _+ xo tanh[(~bo - v)/2] 

From Eq. (3.36) we see that on, e.g., /+,  where a = - ~ and b > v, the free 
energy is 

F(x,  y)  = - 612 + Vo Yo + hoxo = - 612 + (vl2fl)(yo - Xo) 

This means that the slope of F ( x , y ) ,  which is equal to ( h , v )=  
( - v / 2 f l ,  v/2fl), is the same everywhere along /+,  and that every (Xo, Yo) 

0 

1 1 

0 
Y 

-1 

Fig. 5. Free energy surface F(x, y) and phase diagram for the six-vertex model in the (x, y) 
plane, for the same parameter values as in Fig. 3. The two coexistence regions C • correspond 
to the two conical points (h, v)= +_(-v/2fl, v/2fl) at each end of the first-order line in Fig. 3. 
The regions are bounded by the lines l• and y = x (shown as bold lines). The line y = x is also 
a coexistence region, corresponding to the entire first-order line in Fig. 3. [Although it is not 
obvious from this perspective, F(x, y) is constant along y=x.] 
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on l+ corresponds to the same point in (h, v), the conical point. So all the 
polarizations (xo, Yo) are stable in the conical point. This is similar to the 
coexistence of a one-parameter  family of magnetizations m with Iml = too(T) 
in a zero-field XY model for T <  To. However, there the coexistence is 
due to an obvious symmetry in the Hamiltonian, while in the six-vertex 
model the symmetry that allows the polarizations to coexist is not an 
obvious symmetry in the Hamiltonian and therefore appears to be generated 
spontaneously. 

It can be shown that different values of b correspond to entering the 
conical point with different angles from the incompletely polarized region; 
if b is kept fixed as a -~ - ~, the conical point is approached from an angle 

O=arctanI2C~ c~176 1 
+ cosh(b - ,  ) + cosh(b - ~bo)_] 

(3.39) 

with respect to the line h = - v .  Since every different b leads to a different 
value of  (x, y), and (x, y)  gives the slope of F(h, v), the slope in the conical 
point depends on the angle at which it is entered. This gives F(h, v) a 
geometry similar to the tip of a cone at this point, hence the name 
"conical" point. 

The exact solution does not give any states with polarizations in the 
regions C -+ between l+ and l . Thus, no pure equilibrium states with those 
polarizations exist, and strictly speaking the free energy F(x, y) is not  
defined in this region. However, a state with an average polarization (x, y)  
in, e.g., C + can be formed as a mixture of states o n / + ,  properly weighted 
to give the right average polarization. This leads to a free energy that is 
also an average of the free energies of the states in the mixture, which 
means that it is linear in x and y. In this way, the regions C + are inter- 
preted as describing mixtures of the coexisting phases on l+,  similar to 
states that are a mixture of coexisting gas and liquid phases at a gas-liquid 
phase transition. The slope of the free energy surface F(x, y) is then given 
by (h,v)=(-v/2~,v/2~)in C + and (h,v)=(v/2~,-v/213) in C - .  This 
matches the slopes on the lines 1+ and 1_, so that the first derivative of the 
free energy F(x, y) is continuous across these lines. Its higher derivatives 
are not continuous, however, and the free energy has singularities at the 
lines l+ ,  since an analytic function cannot be matched to a purely linear 
function in a regular way. This form of the free energy also means that the 
fields corresponding to the regions C + are the same as those for the lines 
/+,  i.e., the mixtures described by C + occur in the conical points. The two 
linear parts of F(x, y) meet along the line x = y, forming a groove. This 
groove corresponds to the coexistence of the two frozen phases along the 
first-order transition in Fig. 3, and it was already mentioned in ref. 6. 
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However, it is stated there that the groove is the only set of points in 
x, y ~ ( -  1, 1) where F(x, y) is nonanalytic, while in fact there are addi- 
tional nonanalyticities along the lines l+_. 

To examine the nature of the singularities in the free energy we now 
specialize to the case b = (v + q~o)/2, so that we are on the lines y = - x and 
v = - h ,  moving from the incompletely polarized phase toward the conical 
point as �9 The behavior along this line should be qualitatively the 
same as along any other line emanating from the conical point; however, 
it is much easier to deal with just two variables instead of four. Solving for 
�9 in 6v = v -  Vo = 63/)3 + (-0(65) and substituting this in the expression for y 
[Eq. (3.25)], we find that 

, Y2 ~. 2/3 y (v )=YO.v- -~ , ,u  +0(5v 4/3) (3.40) 

So, as 6v goes to zero, y approaches its value ofyo in the conical point with 
a slope that diverges like 6v-1/3. This value is in agreement with recent 
worktl6. 17. 131 which shows that certain (1 + 1)-dimensional surface growth 
models map onto the conical point in the (h, v) phase diagram, and that 
Kardar-Par is i -Zhang (KPZ) "81 scaling holds. In particular, the exponent 
of 2/3 in Eq. (3.40) is given by l /z ,  O71 where z = 3/2 is the dynamic expo- 
nent for the K P Z  universality class. Relation (3.40) can be integrated to 
give F(v), since OF(v)/Ov=-2y (the factor 2 comes from the fact that 
x =  - y  and h =  - v ) .  This gives 

6 6 ) , 2  
F(v) = - ~ -  2yo6v - 5v~/----- 5 6v sis + ~0((~/) 7/3) (3.41) 

The first few terms of this expression reproduce the expansion of F(v) given 
in terms of �9 earlier I-Eq. (3.37)]. Similarly, an expression for F(y) can be 
derived by writing v in terms of 6y = y - Y o  and integrating the relation 
OF(y)/~y = 2v. It is 

F(y)= - ~  + 2Vo yo + 2voay + ~ ayS/Z + (9(ay 7/2) (3.42) 

Again, this confirms the expansion given earlier [Eq. (3.36)]. 
The appearance of the terms 6v 5/3 and 6y 5/'- means that both F(x, y) 

and F(h, v) have nonanalyticities at the first-order transition in addition to 
the expected discontinuities in their derivatives. Thus, the traditional mean- 
field picture of a first-order phase transition as two branches of the free 
energy simply crossing is not valid. As the transition is approached from 
the incompletely polarized phase, the free energy becomes singular, and 
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there is no obvious way to extend this branch of the free energy into the 
regions C + in Fig. 5 to find metastable states. It is thought that the exist- 
ence of nonanalyticities at coexistence boundaries is a generic feature CLg~, 8; 
the two-dimensional Ising model, e.g., shows a weak essential singularity in 
F(h)  at h = 0  and T <  To. Vector spin models (where, as here, a whole con- 
tinuous family of order parameter values coexists at a single point) show 
power law singularities similar to the ones found here, albeit with different 
values for the exponents [we are not aware of any previous observation of, 
e.g., a "susceptibility" 02F(v)/Ov 2 with an exponent of - 1 / 3 ] .  As a further 
comparison we mention that at the PT transition, where y goes to l, the 
free energies behave like (~~ 

F ( y ) =  A + B ( 1 -  y)  + C( l  - y)3 + . . .  

F(v)  = ~ + fl6v 3/2 + 7 fv  z + . . .  
(3.43) 

Note that the conical points are reached either by letting a ~ - x  or 
by letting b--* + c o  (or some combination of both), as was remarked 
earlier. Taking a ~ - x  brings us into the point along some nonzero 
angle with respect to the PT line in (h, v) space, whereas b --* +_ co takes 
us in tangent to the PT line. The scaling properties derived above 
[Eqs. (3.40-3.42)] correspond to the former case. In the special case of a 
trajectory tangent to the PT line, the scaling would be determined by the 
limit b--, +_ co. In particular, we know that the free energy F(h, v) is 
analytic in h and v along the PT line itself (b --* oo with a = 0). By coming 
into the conical point along other curves which are tangent to the PT line, 
intermediate scaling forms of various kinds could be obtained, but such 
scaling behavior is not generic and therefore somewhat contrived. 

This brings us to a closely related point: In which region is the 
behavior near the conical point dominated by the proximity to the conical 
point and in which region is it dominated by the proximity to the PT lines? 
For example, we might ask how to determine the region over which we can 
observe the scaling (e.g., the Pokrovsky-Talapov behavior) associated with 
the boundary of the completely polarized region. The preceding discussion 
suggests that this region is very narrow. Indeed, by considering when the 
second term in the denominator of (A19) of ref. 10 is of order 1, we find 
that a curve of the form d j ~  d~ separates the two regions. Here, dc is the 
distance in the h-v  plane to the conical point and df  is the perpendicular 
distance to the PT line. Note that this curve is tangent to the PT line, 
deviating only quadratically as one moves away from the conical point. 
Application of (A19) in ref. 10 also tells us that the coefficients of the 

8 For a summary and further references see ref. 20. 
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( l - y )  and (1 _y)3 terms of the expansion of the free energy about 
the completely polarized region [as in Eq. (3.43)] are unchanged by the 
presence of the conical point, and thus that the coefficient of the PT scaling 
term is not modified. However, higher-order terms in the expansion diverge 
as one approaches the conical point, representing the fact the PT scaling 
will be observable over an ever-smaller angular region near the PT line. 

We can also examine the temperature dependence of various quantities. 
For example, the jump in y along h =  - v  in the conical point, d y =  
yo(b = (~bo + v)/2) = tanh[(~bo- v)/4], behaves as follows: For T ~  0, i.e., 
A ~ ~ ,  we find that q ~ o - V ~ f l ( f - 2 e ) ~  ~ ,  so that Ay,,~ 1 --2e -t~la-2~v2. 
For T--* T,., i.e., A --* 1, we find ~bo - v oc v, and v oz d 1/2 oc (To - T) 1/2, so 
that dy oc (T c -  T) ~/2. Qualitatively the same temperature dependences are 
found for the opening angle 20o between the two boundaries of the incom- 
pletely polarized phase at the conical point; 0o can be obtained from 
Eq. (3.39) by letting b ~ ~ ,  which gives tan 0 o = tanh[(~b o -  v)/2]. 

Finally, we might ask whether there are any analytic approximations 
we can make which are valid over the entire phase diagram. Indeed, we can 
perform an expansion of Eqs. (2.4)-(2.6) to lowest nontrivial order in the 
temperature. 9 To do this, we ignore terms in r K ( u - v ) ,  p~ and 
~L'R(u) which are down by factors of order e -2'' (or higher powers) from 
the dominant terms. Since to this order the kernel K ( u - v )  is identically 1, 
the integral equation can then be solved analytically and we can write 
down explicit expressions for h, v, x, and y in terms of a and b. The expres- 
sions for h and v, however, involve an integral which apparently must be 
evaluated numerically. Furthermore, even the expressions for x and y can- 
not be inverted to eliminate the parameters a and b from the equations 
entirely (leaving us, as we had hoped, with direct relations between h, v, x, 
and y). Therefore, these expressions, while providing us with a simpler 
numerical task than solving integral equations, do not lead to any 
profound simplification. 

Since we have ignored terms down by orders of e -2", the low-tem- 
perature approximation is quite accurate even up to a large fraction of the 
critical temperature. One particularly interesting fact about the accuracy of 
this approximation should be noted: Although the general features, such as 
the locations of the PT lines (corresponding to a---, 0) are not obtained 
exactly, everything involving the conical points (i.e., the limit a---, - ~  and 
the limit b ~ +__ oo) is exactly correct. This includes the location of these 
points in the (h, v) plane, the expressions for l_+, and even the expansions 
for x, y, h, and v about the conical point [Eqs. (3.24)-(3.25)] to the orders 
we know them. (In particular, this means that the transition temperature 

9 This idea was suggested to us by H. van Beijeren. ~2~1 
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T c is obtained exact ly--a  curious fact for the first term of a low-tem- 
perature expansion!) We hypothesize that the fact that the behavior at the 
conical points is obtained exactly could be evidence that this behavior is 
controlled by a zero-temperature fixed point. 

4. ANALYTIC  RESULTS FOR A = I  

The case zl = 1 corresponds to the critical point T =  Tc, where the 
first-order line in Fig. 3 has shrunk to zero length (see Fig. 6) and the two 
conical points at the end of this line have now coalesced into one point, 
which will disappear for zl < 1. Here, it is possible to obtain some analytic 
results for a ~ - oo, which corresponds to this limiting point. It turns out 
to be much harder to make an expansion about  a = - o o  than about  
a = - r t ,  and we were only able to obtain a limited amount  of information 
about this case. 

I> 0 

- I  
- 1  

=1 

' (1.i) 

( - I , - i )  

0 1 

h 

Fig. 6. Phase diagram of the six-vertex model in the (h, v) plane for the case A = 1. (Specific 
parameter values are 6=  1.1, e=0.45, and kBT=kBT,.~0.5913. ) The bold lines show the 
phase boundaries. For the completely polarized phases, the values of the polarizations (x, y) 
are noted. The phase boundaries are all of second order, since the first-order boundary 
between the (x, y ) =  (1, 1) and ( - 1 ,  - 1  ) phases has shrunk to zero length. The two conical 
points have thus coalesced into a single point at (h, v) = (0, 0). 
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We can go through the same steps as in Section 3, using the relevant 
expressions from Table I. Now Eq. (2.4) can be solved by means of a 
Fourier  transform, defined as 

Ro(t) = ~ e'"tRo(u ) du (4.1) 

The Fourier  t ransform of K is again the same as in ref. 7, and the one for 
can easily be calculated: 

K(t) = e -I,t 

I {  0 ( t > ~ O ) ( b > l / 2 )  
2e b' sinh(t/2) (t < 0) 

Solving (2.4) for Ro(t) gives 

I {  0 ( t > O ) ( b > l / 2 )  
/~o(t) = _eCb-  1/2), (t < 0) 

t { 0  e'b+'/z'' ( t > 0 )  (t < 0) (b < - 1/2) 

(4.2) 

(4.3) 

As usual, Ro(0) is not determined. However,  that  does not prevent us from 
Fourier  t ransforming back to find Ro(u), 

f 0 
--f e-iUt+t(b-t/2J dt 

- oo 
Ro(u )=  --~e-i~'+"b+~/~-) dt= 

aO 

- 1  
(b > 1/2) 

b - 1/2 - iu 
1 

(b  < - 1 /2 )  
b + 1/2 - iu 

(4.4) 

It is to a certain extent possible to expand R(u) in 1/a around 
a = - oo. It  can be shown that  the leading corrections are of the form 

R(u) = Ro(u) +j(u.a)f / + ig(u/a-----~) + ... (4.5) a 2 a 

with f and g real functions, f even and g odd. These two functions are 
determined by two integral equations which still contain a. Even though 
numerical evidence shows t h a t f a n d  g have well-defined limits for a ~ - m,  
there is no obvious way to take this limit in the integral equations, and we 
have not been able to obtain closed-form expressions for the two functions. 



1300 Bukman and Shore 

To get Yo and ho we again apply (2.6). It turns out that we have to be 
slightly careful in taking the limit a--* - o o ,  because we have to consider 
the possibility that b diverges along with a, so we cannot just set a = - oo 
as we did before. From Table I it is apparent  that p~ --* 0 no matter how 
a and b go to infinity. For  the integral term we find 

O(a - v) Ro(v) dv --* O( - oo) Ro(v) dv 

= arctan (4.6) 

with the upper (lower) signs for b > 1/2 (b < - 1 / 2 ) .  So we find that for 
a - *  - -0 (3  

{ l - ( 2 / r O a r c t a n ( - a / 2 b )  ( b >  1/2) 
)% = - (2/~) arctan(a/2b) (b < - 1/2) (4.7) 

and ho---0 in both cases. So by letting b go to infinity along with a, we can 
select any positive value of Yo. It follows from the expansion (4.5) that the 
corrections to both h and y will be of order l/a; however, the coefficients 
of these terms cannot be calculated without knowledge of the functions f 
and g. 

To find expressions for x and v, we can again use the.symmetries 
discussed in Section 3.3 if every occurrence of v is replaced by 1/2. In par- 
ticular, we immediately find that Vo = 0. 

It is also possible to find the free energy in the limit that a ~ - o o .  
As before, it turns out that for b < - 1/2 and b > r the right eigenvalue is 
largest, and for 1 / 2 < b < r  the left eigenvalue is largest. In all cases 
we find that Fo(h, y )=  -6 /2 ,  independent of b. This confirms the above 
conclusion that Vo = c?Fo/OYo = O. 

We can again examine the scaling behavior of the free energies. As in 
the case .4 > 1, F(h, y) is a regular power series in the expansion variable 
1/a. However, in contrast to that case, the expansions for y and h both con- 
tain linear terms in the expansion variable. This implies that the polariza- 
tions are nonsingular functions of the fields. Doing the Legendre transform 
of F(h, y) to obtain F(x, y), we find that the coexistence regions C -+ have 
shrunk to the line x = y and the behavior around this line is now quadratic 
in x - y .  So both the groove at x =  y and the singularities at the lines l_+ 
(which are now collapsed to x = y)  have disappeared. The free energy can 
thus we written 

F(x, y )=  --~ + A ( x -  y)2 + (9((x-  y)3) (4.8) 
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where the coefficient A = A(x + y) is a function of the position along x -- y. 
Similarly, the free energy as a function of the fields is given by 

6 
F(h, v) . . . .  yo(h + v) + ~((v - h)-', (v + h) 2) 

2 
(4.9) 

where Yo depends on the ratio a/b according to Eq. (4.7), i.e., it depends on 
the details of how the point h = v = 0 is approached. Note that both the 
jump in the slope of F(h, v) on entering this point and the singularities on 
approaching it have disappeared; however, the slope in the h + v direction 
(given by -Yo)  still depends on the way in which this point is approached. 
This reflects the fact that, as T--* Tc from above, the two PT boundaries 
approach each other, and the curvature of F(h, v) in the h + v direction 
goes to infinity. 

5. C O N C L U S I O N  

To summarize, we have studied the phase diagram of the asymmetric, 
ferroelectric six-vertex model in the low-temperature phase. From numeri- 
cal results we get a global picture of the behavior of the free energy as a 
function of the polarizations and fields, F(x, y) and F(h, v), respectively. By 
analytical methods we found several new and interesting features. For 
T <  Tc (A > 1), in addition to the groove that was already known to exist 
in the free energy surface F(x, y), there are additional singularities along 
the lines 1+ corresponding to two conical points in F(h, v). In these points, 
which lie at the ends of a ridge in F(h, v), all polarizations on l+ are stable 
for one value of the fields h and v. Also associated with these points are the 
two coexistence regions C -+ where mixtures of the coexisting states are stable. 

As T ~  Tc (A ~ 1), the size of the regions C + decreases, as does the 
length of the ridge in F(h, v). At T =  Tc, the two conical points merge as 
the ridge is reduced to a point, and the regions C -+ vanish. There is still a 
family of polarizations, x =  y, that is stable in the (one) conical point. If 
there are any nonanalyticities left in the free energy, they are of higher 
order than the terms we have been able to study. Above To, the conical 
point disappears completely. 

The behavior of the free energies when approaching the conical points 
is rather unexpected. Both the fact that there are power law divergences, 
while the phase transition is discontinuous and thus of first order, and the 
specific exponents of the power laws, are interesting. It would be useful to 
find metastable states in the regions C -+ with a uniform polarization and 
examine how such a state decays into a mixture of stable states on the lines 
l+. However, because of the singularities in F there is no obvious way to 



1302 Bukman and Shore 

analytically continue the free energy into the unstable region in order to 
find such metastable states in a straightforward manner.  Also, there does 
not  seem to be any mechanism to select one of the many possible mixtures 
into which such a state might break up. Thus one can ask how the process 
of phase separation, or spinodal decomposition, would actually take place. 

A particular system in which this issue needs to be addressed is the 
phase separation of crystal surfaces. ~22' 23~ Through the mapping of the six- 
vertex model onto restricted solid-on-solid models c9' 1o~ the polarizations x 
and y are found to be equivalent to surface orientations, and the free 
energy F(h ,  v)  turns out to be a replica of the crystal shape itself, "~ ~11 
while F ( x ,  y )  is the surface tension. Thus, the conical points represent 
actual points on the crystal surface that have a conical geometry. ~~ In these 
points, various surface orientations all coexist. Also, there is a discontinuity 
in orientat ion as one crosses a conical point,  since the orientations that 
correspond to states in the regions C • are not stable anywhere. Further-  
more, if a crystal is cleaved to form a surface having one of these unstable 
orientations (say in C+),  it should decompose into a mixture of stable 
orientations selected from the set /+ ,  which then coarsens over time. This 
is the phase separation process mentioned in the previous paragraph. These 
issues are discussed in more detail in ref. 23. 

A P P E N D I X  A. THE FOURIER C O E F F I C I E N T S  OF ~(u)  

The Fourier  coefficients of ~ are given by 

f fn e ira' sinh v 1 ~ 1 d u  (A.1) 
~,, = ~ - , ,  du ~(u)e  i''u = 2--~ _,~ cosh v - cos(u + ib) 

For n >i 0, substi tuting z = e i" gives 

sinh v c z" 
L = - i J dz  (A.2) 

7t o 2z cosh v - e b - z2e e 

The contour  is a counterclockwise circle with radius 1. The poles are at 
= e - ' + b  and z~ = e "+b. For  b > v both poles lie outside the contour,  and -71 

~,, = 0. For  b < - v  they are both inside the contour,  and the integral is 

i _lz 1 
~ 2 2e b'' sinh nv 2rci - i sinh v z'[ 

I- = - (A.3) 
rc 2 s i n h v  - 2 s i n h v  

~o For A < - 1, the free energy as a function of x and y has a conical point (i.e., there is a 
cusp in the surface tension); this leads to a flat region in the crystal shape F(h, v): a 
facet. ~7's~ This situation is thus the converse of what takes place for .4 > 1. 
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So for n>~O 

0 (b > v) (A.4) 
~" = - 2 e  h" sinh(nv) (b < - v) 

For  n < 0, we substitute z = e -i" instead, and in a similar way we find 

~"={20eb"sinh(nv) (b > V)- v) (A.5) 

A P P E N D I X  B. T H E  I N T E G R A L S  I n 

The integrals I,, are defined as 

F I,,= - O(--rc-v)e- i""  dv (B.1) 
- r t  

The function O ( - n - v )  can be rewritten as 

{ } O ( - r c - v ) = i  In e,~.+e,_----: +2v  (B.2) 

where the In has a branch cut along [0, oo), so that its imaginary part runs 
from 0 to 2~i. This is because O ( - g - v )  must run from 0 for v =  -Tr  to 
-2re for v = re. 

For  n ~ 0  we use (B.2), and define z =  - e  ~'', so that 

I , , = - ( - 1 ) "  dz ln~--~_z+ z I''l-~ (B.3) 

with A = e 2,., B = e z', C = 2v. The contour  is given in Fig. 7. So we must 
examine integrals of the type 

i , ,=  In ~ _  z + C z " - ' d z  (B.4) 

for n>~0. For  n r  

i x - A  711x, ,_ ld  x 7 , , + f s  ~ _ x  + C +  

+ f ;  [ ln  x -~-~_ A r 1 fo + C + 7 2  x ' ' - ) d x +  l i t t l e l o o p = 0  (B.5) 
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TI- 

Fig. 7. Contour of integration in the complex z plane for the integrals I,, of Eq. (B.1). 
A branch cut runs along the real axis between A and B. The labels 0 and 2n above and below 
this branch cut give the value of the imaginary part of the logarithm. For the case n = 0, there 
is also a pole at z = 0. 

where now the ln's are the principal branch (i.e., with a branch cut along 
( -  ~ ,  0)], and the ?'s are the imaginary terms that result from approach- 
ing the cut from above or below. Since the integral around the little loop 
goes to zero and the line integrals give ( 1 -  A")(?~- ?2)In, we find 

2hi 
7,, = - -  (1 - A " )  (B.6) 

11 

For n = 0 there is an extra pole at z = 0, so we must replace the right-hand 
side of (B.5) with 

27ri (ln U-~j + C) = 2rci(ln A - ln B + i~ + C) (B.7) 

The two line integrals give - ( 7 1 - ? 2 )  In A = 2hi In A. So now 

I'o = - -  2rc2 + 2 ~ i ( C - -  In B )  ( B . 8 )  

For n < 0  a similar calculation is performed by defining z = - e  -iv 
The end result for I,, is 

I(2~21)" 2rri (1 - e-2, ' )  n (n>0)  

I , =  (n=0)  (B.9) 

[~ ( -  1)'' 2hi (1 n e2"") (n<0)  
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i 

Fig. 8. Contour  of integration in the complex z plane for the integrals J ,  of Eq. (C.I)  for the 
case B <  A < 1. A branch cut runs along the real axis between A and B. The labels __+n above 
and below this branch cut give the value of the imaginary part of the logarithm. For  the case 
n = 0, there is also a pole at z = 0. 

APPENDIX C. THE INTEGRALS Jn 

Wanted are integrals of the form 

J,,=Iodz l n z - ~ + C  z " - '  (C.1) 

where n >~ 0, A, B >  0, and the In is the principal branch. There are six 
different cases, corresponding to the six orderings of A, B, and 1. They can 
all be computed in a similar spirit as in Appendix B. As an example, the 
contour for the case B < A < 1 is shown in Fig. 8. As another example, the 
contour from Appendix B can be used for the case A < 1 < B, provided that 
the values 0 and 2z for the imaginary part of the logarithm along the 
branch cut are replaced by - n  and n, respectively. The results for J,, are 
displayed in Table II. 

Table II. The Integrals J .  

Jo Jn (n~O)  

1 > ,4 >'B 2niC 2hi(B" -A" ) [n  
A > 1 > B 2hi(In A + C) 2n i (B" -  l ) /n 
A > B >  1 2hi(In A - - I n  B +  C) 0 
1 > B > A 21tiC 2ni(B" - A")/n 
B >  1 > A  2 n i ( - l n  B + C )  2hi(1 --A")/n 
B > A > 1 2rci(ln A - In B + C) 0 
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APPENDIX  D. THE Z E R O T H - O R D E R  FREE ENERGY 

In this appendix we calculate the free energy (2.5), to zeroth order in 
e, for both the left and right eigenvalues, and compare them to find the 
larger eigenvalue (i.e., lower free energy). There are four cases: 

C a s e  1. b > v ,  ~ = ~ R .  In this case, Ro is given by [see Eqs. (3.3) 
and (3.7)] 

- - 1  

Ro(U) = / ~  0 -- ~ e f b - " l " e  - i ' '  (D.1)  
t ~ =  - -  c C  

Substituting this in Eq. (2.5) gives 

- ~ F r ~ ( h ,  y ) = ~ ( l n q + 2 f l h ) - 2 -  ~ ~ I ~ q g R ( u ) e - i " " d u - R , ,  (D.2) 
I t =  - -  c t 2  

Now, defining z = e ~" and using Appendix C, we find 

f "  q S R ( u ) e  - i ' "  d u  
- -  r f  

=-ifo{lnZ v / z . . . .  ' d z  

2re (e-"fb-*~ 1) ( - 2 v + ~ o < b < ~ o )  (n<O) 
= n 

(e  -"~b - ~o~ _ e -"~2" + h - ,o~) (b  < - -  2v  + ~)o) 

I ' 2nv  (b  > q)o) 

= 2~(v-~bo+b ) ( -2v+~bo<b<~bo)  (n=0)  (D.3) 

( -2rtv (b < - 2v + ~bo) 

Substituting (D.3) into (D.2) gives the following results: 

(a) v < b <  -2v+~b o 

- ~ F R ( h ,  y ) =  �89 r/+ 2/3h)+ v R o - I n ( 1 -  e"-~~ + ln(1 - e  3"- ~~ (D.4) 

(b) - 2 v + ~ b o < b  <~bo 

- [3FR(h,  y) = �89 (ln 71 + 2 f lh )  + ((~o - v - b)1~ o - In(1 - e " -  ~o) + ln(1 - e"- b) 

(D.5) 
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(c) b > ~o 

-[3FR(h, y)  = �89 q + 2 / ? h ) -  vRo (D.6)  

Case 2.  b > v, q5 = ~ L  A very s imi la r  ca l cu l a t i on  gives the  fo l lowing  
results:  

( a )  v < b < ~ o  

- ~FL(h, y)  = - �89 (In 1/+ 2/~h) - V/~o - In( 1 - e v - ~o) + In( 1 - e . . . .  ~~ 

(D.7)  

(b)  ~bo < b < 2v +~bo 

--[3FL(h, y)  = - �89 r / +  2/~h) - (~b o + v - b )Ro  

- ln (1  - e ' - b )  + ln(  1 - -  e - ~ - ~ ~  ( D . 8 )  

(c) b >  2v +~b o 

-~Fe(h, y)  = - �89 q + 2/~h) + V/~o (D.9)  

Case ,3. b < - v, q5 = ~ R .  Here  we find t ha t  

-[tFR(h, y)  = �89 r / +  2/3h) + V/~o (D.10)  

Case 4. b < - v ,  ~ = q ~ L .  Here ,  

-[trL(h, y)  = - �89 r / +  2/?h) - vRo (D.11)  

N o w  we have  to col lect  all  i n f o r m a t i o n  on  -BFR.L(h, y )  and  find the 
m a x i m u m  over  R, L for  the  va r ious  intervals .  The  s imples t  case is b < - v: 
Here,  

-[3FR(h, y)  = �89 r / +  2/3h) + V/~o = t~rL(h, y) (D.12)  

Also,  

e" + a 
/ ~ ~  1 +e "+b and  2~h=v (D.13)  

We also k n o w  tha t  In r / >  v, say In r / =  v + ( wi th  ( >~ 0. T h e n  

1 1 
-~FR(h, y ) = v  1 + e  "+b t - ~ > 0  (D.14)  
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So -flFR(h, y) corresponds to the larger eigenvalue in this regime. Then, 

_flFo(h, y)=fl_~_~ + V(ko+~)  f16 . v = - ~ - + ~  y (D.15) 

For b > v similar reasoning shows that for b ~ Iv, ~o] the left eigen- 
value is largest and for b > 4o the right eigenvalue is largest, and we find 

1 
= T - - ~ y  (D.16) 
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